

Comment démêlé les Réseaux de Co-occurrence Discordant (RCD/DCN)

Présenté par Guillaume Gauthier

Terminologie de base

- Prenons le temps de définir la terminologie de base :
- Liens concordants :
 - Liens entre deux nœuds montrant une relation n'ayant pas changé entre les situations 1 et 2.
- Liens discordants :
 - Liens entre deux nœuds montrant une relation ayant changé entre les situations 1 et 2.

Plan de la présentation

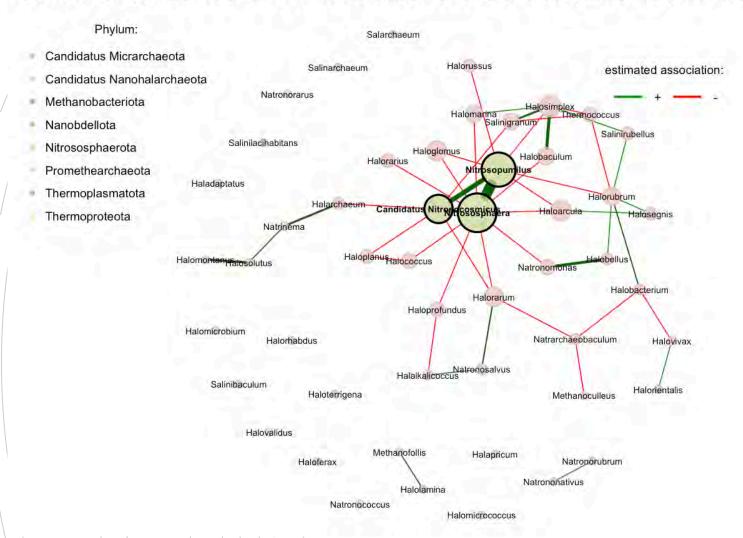
? Pourquoi utiliser les DCN?

Interprétation de résultat DNC

* Exercices

Pop Quiz

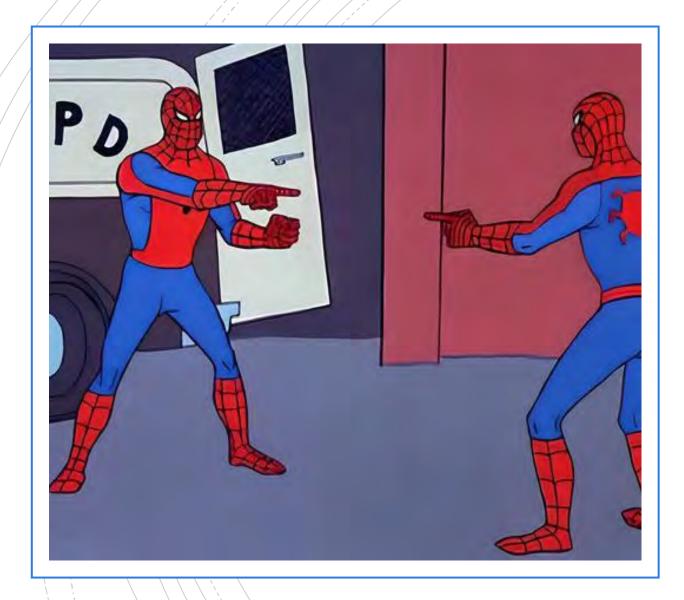
Pourquoi utiliser les DCN?


3 grandes questions:

- 1. Qui interagit avec qui?
- 2. Est-ce qu'un traitement (ou toute autre perturbation du milieu) affecte la population?
- 3. Comment est-ce que les interactions sont affectées?

Network on genus level with SPRING associations des 50 genus les plus abondants QU'EST-CE C

Qu'est-ce qu'un CN?

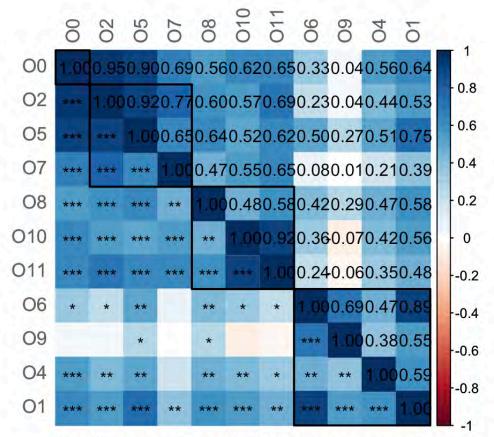

C'est une analyse qui permet de visualiser les interactions entre différents composants d'un milieu:

- Les microorganismes composant un microbiome ou microbiote;
- Les étudiants d'une classe;
- Des cultures bactériennes dans un plat de Petri;
- ...

Composé de 2 entités:

- 1. Les nœuds : représentation des entités (otu, genre, individus, ...).
- Les liens: lignes connectant les nœuds qui apparaissent souvent ensemble ou dont l'abondance est corrélée.

Concept purement mathématique. N'intègre pas de concepts biologiques (métabolisme, ...) ni génétiques/phylogénétiques.



Différence entre DCN et CN?

- On peut faire une analogie entre les métriques de diversité (alpha/bêta) et les CN.
- Les CN n'utilisent ou n'analysent qu'une seule variable, indépendamment des autres. On observe les impacts intratraitement:
 - Div alpha ~ CN
- Les DCN analysent les variations entre 2 conditions/jeux de données ou 2 variables (*limite de 2*). Ils permettent donc d'observer des variations intertraitement:
 - Div bêta ~ DCN

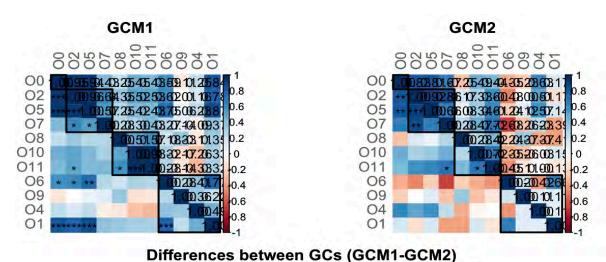
Théoriquement, il est possible de calculer toutes les permutations de paires d'un jeu de données, mais c'est très demandant en termes de ressources

GCM

Significance codes: ***: 0.001; **: 0.01; *: 0.05

Comment est-ce qu'un CN est construit?

Création d'une matrice d'association ou adjacency;


Plusieurs formules et théories existent. Voici 3 qui sont recommandées en microbiologie:

- SparCC (corrélation)
- CClasso (corrélation)
- SPRING (dépendance conditionnelle)*

Cela va créer une matrice d'association (Group Connection matrice/GCM) :

Valeurs avant sparsification.

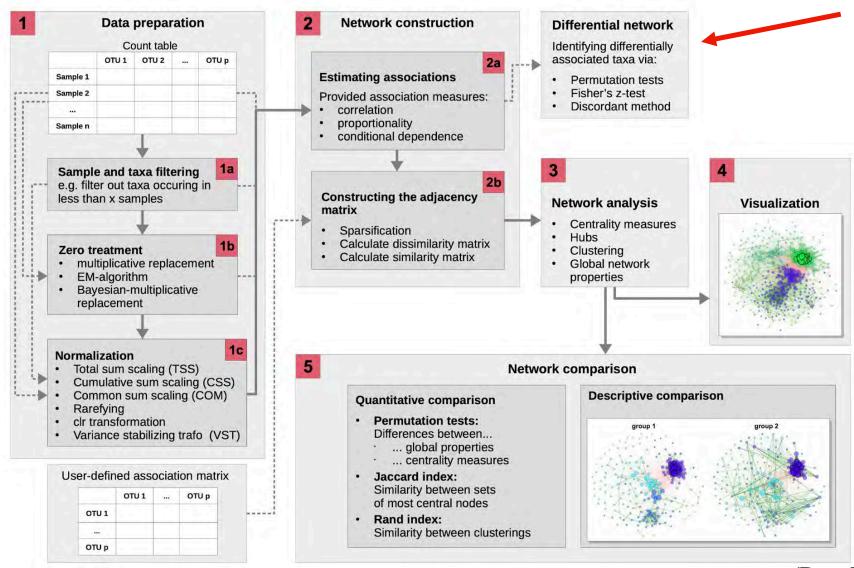
non compatible avec la méthode discordante

00 0.00 102 43 28 50 004 00 94 43 38 6 02 0.00 004 22 18 49 0 50 900 35 9 0.00 00 17 009 18 99 45 35 77 0.00 009 17 009 18 99 45 35 77 0.00 28 15 42 008 26 7 6 0.51 0.00 28 10 42 008 28 1 0.36 0.00 28 1 0.00 008 28 1 0.06 0.00 008 28 1 0.06 0.00 008 28 1 0.06 0.00 008 28 1 0.06 0.00 008 28 1 0.06 0.00 008 28 1 0.06 0.00 008 28 1 0.08 0.00 008 28 1 0.0

Comment est-ce que les CN sont comparés et comment les DCN sont construits ?

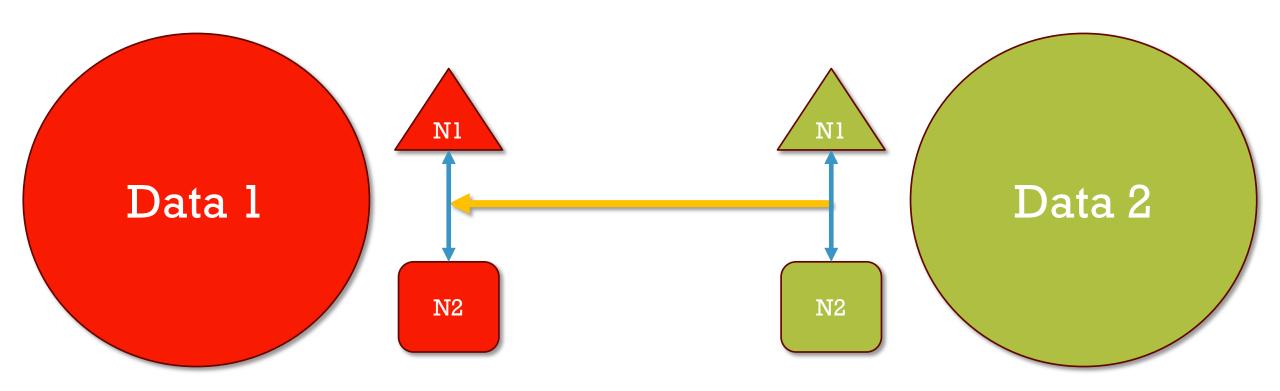
Avec Netcomi 2 étapes:

- Construction des deux matrices d'association.
- C'est à partir de cette matrice que la matrice de comparaison de CN sera construite.

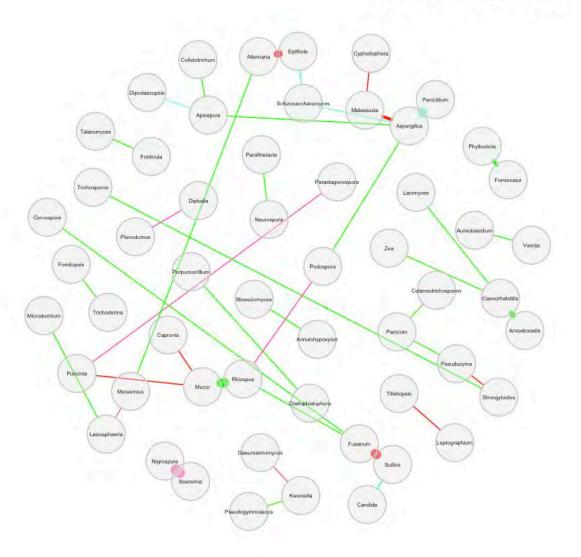

Comparaison des Network:

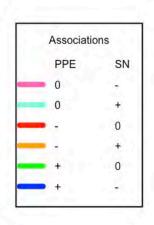
Discordance et permutation

assoMat1


assoMat2

	Caenorhabditis ‡	Necator [‡]	Strongyloides ‡	Loa [‡]	Brugia [‡]	Trichinella [‡]		Caenorhabditis *	Necator	Strongyloides ‡	Loa ÷	Brugia ‡	Trichinella ‡
Caenorhabditis	1.000000e+00	3.512127e-02	-1.344616e-02	6.895716e-03	-1.669490e-02	5.706044e-03	"Necator" abditis	1.0000000000	3.484035e-03	1.792419e-02	2.294418e-02	1.456247e-02	-2.055047e-01
Necator	3.512127e-02	1.000000e+00	2.885280e-03	-1.472533e-04	-2.511525e-03	-7.001424e-04	Necator	0.0034840349	1.000000e+00	-2.661144e-03	4.567786e-05	-6.137169e-04	-1.282739e-03
Strongyloides	-1.344616e-02	2.885280e-03	1.000000e+00	4.034965e-03	-3.591251e-03	1.525047e-02	Strongyloides	0.0179241924	-2.661144e-03	1.000000e+00	1.026084e-04	4.339243e-04	6.503436e-03
Loa	6.895716e-03	-1.472533e-04	4.034965e-03	1.000000e+00	-9.920698e-04	5.785333e-03	Loa	0.0229441770	4.567786e-05	1.026084e-04	1.000000e+00	4.421045e-05	3.317499e-05
Brugia	-1.669490e-02	-2.511525e-03	-3.591251e-03	-9.920698e-04	1.000000e+00	-3.437758e-03	Brugia	0.0145624708	-6.137169e-04	4.339243e-04	4.421045e-05	1.000000e+00	3.197375e-04
Trichinella	5.706044e-03	-7.001424e-04	1.525047e-02	5.785333e-03	-3.437758e-03	1.000000e+00	Trichinella	-0.2055046781	-1.282739e-03	6.503436e-03	3.317499e-05	3.197375e-04	1.000000e+00
Fusarium	5.860748e-04	0.000000e+00	-7.276149e-06	-7.603010e-06	8.473536e-06	1.125543e-05	Fusarium	-0.1764322884	3.961453e-04	2.009323e-04	2.854509e-05	-6.952671e-04	1.879096e-05
Ilyonectria	-1.243824e-02	-2.486311e-03	-1.330723e-03	6.278358e-06	9.456131e-04	1.710432e-04	llyonectria	-0.1176552839	6.809763e-03	-4.033701e-04	1.288039e-04	-1.409280e-02	-1.910115e-03
Trichoderma	-9.170509e-02	-2.080824e-03	-2.575547e-02	-1.189153e-02	8.875619e-03	-4.098462e-02	Trichoderma	-0.0443026320	1.903519e-03	-8.567604e-03	-9.697972e-04	-1.069030e-03	-3.527770e-03
Purpureocillium	2.694225e-02	8.042070e-04	1.141627e-03	1.258746e-03	-1.277810e-03	3.750395e-03	Purpureocillium	-0.2501921492	6.532992e-03	-2.651884e-02	6.882193e-05	-3.309604e-03	-1.436864e-02
Hirsutella	5.502321e-02	1.306966e-02	1.334088e-02	2.214616e-03	-6.536148e-03	7.929011e-03	Hirsutella	-0.0521203750	1.506699e-03	2.566564e-03	4.994919e-05	-4.797918e-03	9.212428e-04
Drechmeria	9.664770e-02	2.576476e-02	1.712539e-02	-1.610598e-04	-9.829106e-03	-6.859467e-04	Drechmeria	-0.0232908470	7.343702e-04	-8.008616e-04	5.315501e-05	-6.066903e-04	-8.168407e-04
Metarhizium	2.337416e-01	-6.116668e-04	-1.173428e-04	-4.180113e-06	2.458862e-04	3.383957e-05	Metarhizium	0.0012897831	1.753873e-04	5.614962e-05	2.644924e-05	2.382497e-04	-2.437569e-04
Pochonia	2.427181e-03	1.439468e-04	-1.605039e-05	-1.543627e-04	3.242621e-05	-3.714743e-04	Pochonia	0.0180568269	-1.682642e-04	1.190307e-03	6.186048e-05	1.069617e-04	5.433136e-04
Ustilaginoidea	7.308913e-02	8.439212e-03	7.686199e-03	2.322680e-03	-4.942244e-03	8.055579e-03	Ustilaginoidea	0.0104758531	1.808523e-04	-3.902497e-04	5.254456e-05	-7.050631e-06	-1.634893e-04
Hypocrella	-7.464836e-04	-6.911119e-05	4.562900e-04	1.403088e-04	-5.338741e-05	5.364304e-04	Hypocrella	0.0143386172	-2.418858e-04	1.138556e-03	2.176233e-05	1.254301e-04	5.480606e-04
Epichloe		1.233134e-06	6.297947e-06	-5.232885e-06	5.040542e-06	7.246295e-06	Epichloe	-0.0003169512	4.960999e-05	3.429104e-05	4.298158e-05	2.612861e-05	5.158402e-06


(Peschel et al., 2021)


Direction des liens

Interprétation de résultat DNC

Differential network

Points importants

Discordance vs concordance?

Les 3 liens concordants:

Les 6 liens discordants:

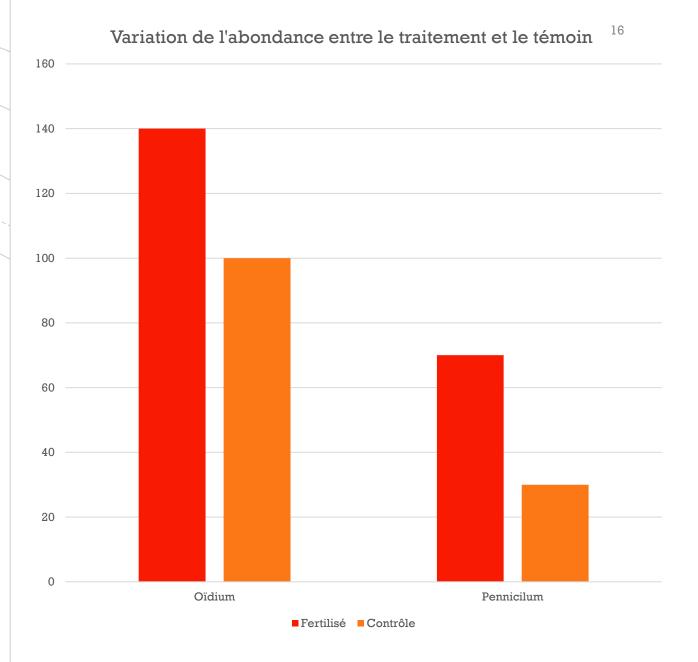
Que comparons-nous?

Est-ce qu'il s'agit d'une analyse directionnelle?

Mise en situation

- Si nous avons un DCN (fertilisé/non fertilisé) et les noeuds Oïdium (n1) et Penicillium (n2) reliés par un lien +-. Que pouvons-nous en tirer?
- Décomposons la situation:
- 1. Fertiliser (+): l'abondance d'Oïdium et de Penicillium est plus élevée dans le groupe fertilisé.
- 2. Non fertilisé (-): l'abondance d'Oïdium et/ou de Penicillium est plus faible dans le groupe non fertilisé.
- 3. Le lien +-: La relation entre les deux a drastiquement changé. Dans le groupe fertilisé, quand Oïdium ou Penicillium est fortement présent, l'autre a tendance à l'être aussi. Et cette association positive est significativement plus forte, ou de direction opposée, que celle du contrôle.
- 4. Donc leur relation positive est due au traitement.

Situation	Nb. Otu/ traitement	F ertilisé	Contrôle	Différence	Discordance	
1	Oïdium	140	100 +40		•	
1	Pennicillum	70	30	+40	+-	
0	Oïdium	60	25	+35		
2	Pennicillum	65	50	+15	+-	
2	Oïdium	80	60	+20		
3	Pennicillum	80	40	+40	+-	


N'oublié pas!!!

- Les analyses de discordances observent les changements d'une situation « A » à une situation « B »
- Le poids des liens n'est pas considéré, seulement la variation entre les 2 situations.

Comment vérifier?

La méthode la plus simple = graphique abondance

Mais ce n'est pas parfait

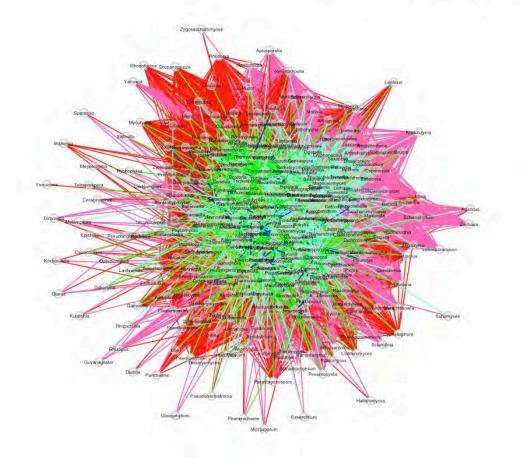
Que pourrait être les causes de ce changement?

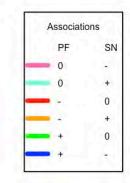
Condition du milieu devenue plus favorable/défavorable?

Compétition pour les ressources?

Production d'organite antifongique?

- - -


Faire attention!!!


Qu'est-ce que le 0 dans +0 implique?

- 0 ne veut pas dire aucune interaction ni impact! Mais pas d'interaction ni de changement **significatif.**
- Comme pour la capacité tampon du sol, l'effet peut être atténué ou masqué, ou il peut n'y avoir aucun effet.

Exercice

Prenons de mes données en exemple

DCN

Que faire avec ça?

On ne peut rien faire avec ça dans sa forme actuelle

Option?

- 1. Travailler le réseau avec Gelphi;
- 2. Sortir les données sous forme de table

	Discordance	FM - NS		RM - NS		SM - N	S	LM - NS	
	Discordance	n. edges	%	n. edges	%	n. edges	%	n. edges	
	+-	469	3	2718	15	412	3	1277	7
	+0	775	5	5026	27	793	5	4126	23
.E	-+	523	4	402	2	594	4	416	2
Fungi	-0	5247	35	5027	27	6058	39	5255	29
ĬΤ	0+	1153	8	799	4	1006	6	965	5
	0-	6674	45	4689	25	6679	43	6042	33
	Total	14841		18661		15542		18081	

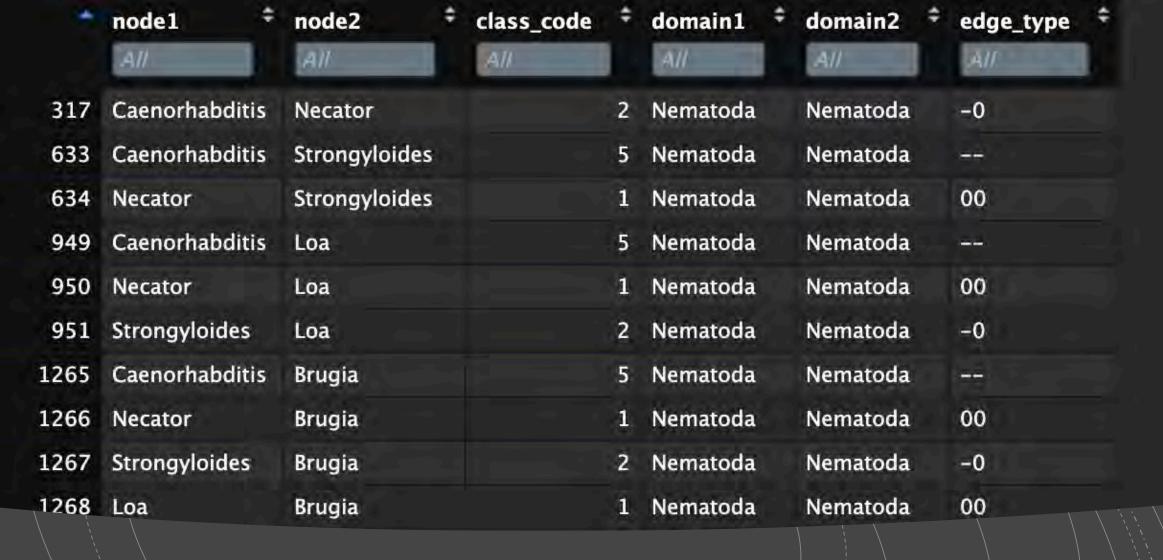
Résultat de discordance

Que faire ici?

Choix

- Si on choisi de se concentrer sur le FM-NS et ses liens +-. Quelle serait la prochaine étape selon vous?
- Explorer quelles paires composent les 469 liens?

19


Edge Type: +-# A tibble: 10×6 edge_type genus total_edges as_node1 as_node2 domain <chr> <chr> <chr> <int> <int> <int> Caenorhabditis Nematoda 49 49 Colletotrichum Fungi 47 43 Penicillium Fungi 33 29 Pyricularia Fungi 29 24 Aspergillus Fungi 28 18 10 Diplodia Fungi 28 10 18 Cryptococcus Fungi 25 19 Pseudozyma Fungi 23 23 Mycena Fungi 22 17 Rhodotorula 21

Voici le top 10 noeuds ayant ce type de lien

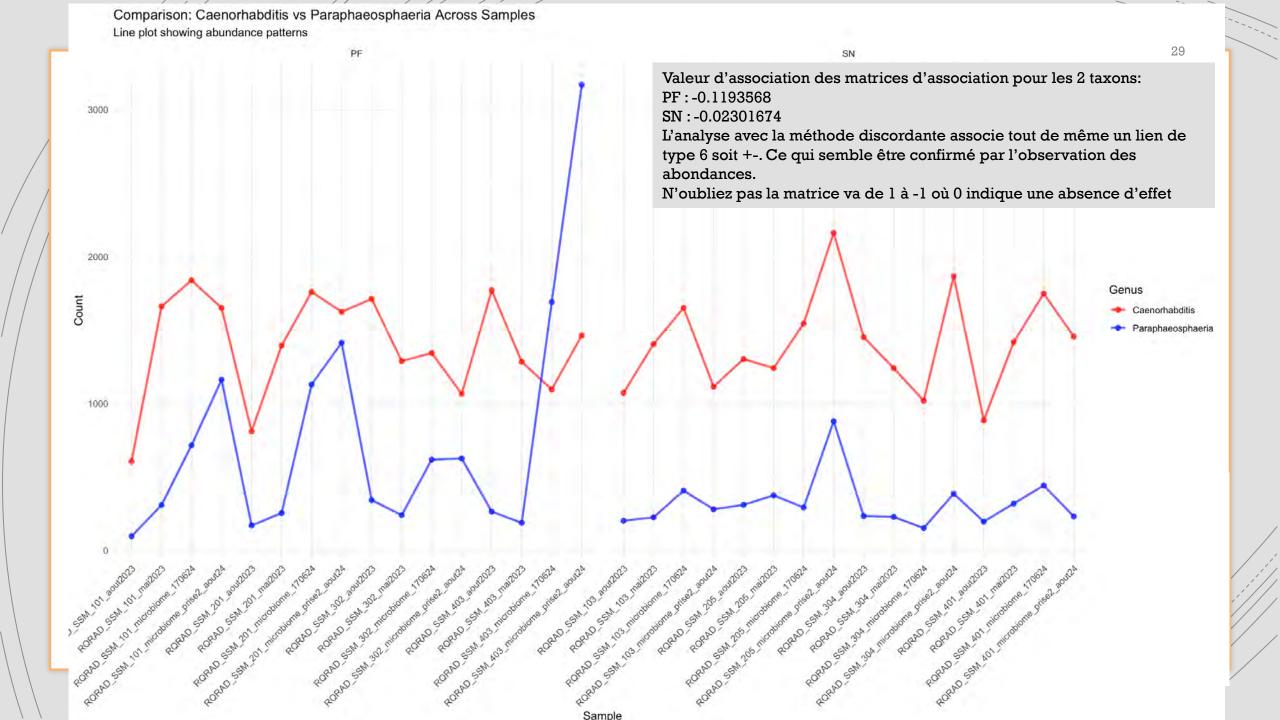
Fungi

10 +-

Quelles informations peut-on en sortir? Qu'elle est l'autre partis des paires?

Comment explorer ses données?

Dans R, on peut facilement explorer avec l'option filtrer


	/ I litter									
	node1 *	node2	class_code	٦	domain1	*	domain2	٠	edge_type +-	*
	caenor	All	All	4	All		All	١.	T	
2529	Caenorhabditis	Trichoderma		6	Nematoda		Fungi		+-	
3161	Caenorhabditis	Hirsutella		6	Nematoda		Fungi		100	
3477	Caenorhabditis	Drechmeria		6	Nematoda		Fungi		FE	
4425	Caenorhabditis	Ustilaginoidea		6	Nematoda		Fungi		##	
6637	Caenorhabditis	Geosmithia		6	Nematoda		Fungi		+-	
7901	Caenorhabditis	Berkeleyomyces		6	Nematoda		Fungi		13	
9165	Caenorhabditis	Thermothelomyces		6	Nematoda		Fungi		#=	
10113	Caenorhabditis	Mycothermus		6	Nematoda		Fungi		+=	
11061	Caenorhabditis	Thermochaetoides		6	Nematoda		Fungi		+-	
11693	Caenorhabditis	Sordaria		6	Nematoda		Fungi		+-	
13273	Caenorhabditis	Pyricularia		6	Nematoda		Fungi		+=	
14537	Caenorhabditis	Sporothrix		6	Nematoda		Fungi		BE	

Ou on peut faire un peu de code

```
caenorhabditis_partners <- results_domain_summary_with_top_genera_PF_SN$edge_data %>%
   filter(node1 == "Caenorhabditis" & edge_type == "+-") %>%
   pull(node2) %>%
   unique()
# Convert from factor to character
caenorhabditis_partners <- as.character(caenorhabditis_partners)
correct_target_genera <- c("Caenorhabditis", caenorhabditis_partners)</pre>
```

> corr	ect_target_genera	Searchi.	3.12.40	San Barrell	i emilie ausai	(6.656.504)
[1] "	Caenorhabditis"	"Trichoderma"	"Hirsutella"	"Drechmeria"	"Ustilaginoidea"	"Geosmithia"
[7] "	Berkeleyomyces"	"Thermothelomyces"	"Mycothermus"	"Thermochaetoides"	"Sordaria"	"Pyricularia"
[13] "	Sporothrix"	"Cadophora"	"Venustampulla"	"Pseudogymnoascus"	"Thermomyces"	"Capronia"
[19] "	Endocarpon"	"Bipolaris"	"Pyrenophora"	"Cucurbitaria"	"Paraphaeosphaeria"	"Diplodia"
[25] "	Coniosporium"	"Ogataea"	"Eremothecium"	"Lachancea"	"Nakaseomyces"	"Huiozyma"
[31] ".	Ascoidea"	"Dipodascopsis"	"Limtongia"	"Dichomitus"	"Fomitopsis"	"Heterobasidion"
[37] "	Cantharellus"	"Cryptococcus"	"Cutaneotrichosporon"	"Kalmanozyma"	"Melanopsichium"	"Jaminaea"
[43] "	Malassezia"	"Cokeromyces"	"Rhizomucor"	"Polychytrium"	"Nematocida"	"Capsaspora"
[49] "	Sphaeroforma"	"Zea"				

Comment vérifier les relations?

- 1. On retrouve toujours une paire +-/-+, car les noeuds n1 et n2 sont intervertibles?
 - Non, dans ce type d'analyse les liens ne sont pas dirigés. La position des nœuds n'a pas d'influence sur la direction du lien.
- 2. Qu'arriverait-il aux résultats si on insère le contrôle en datal et le traitement en data?
 - Les directions des liens seront inversées par rapport à l'exemple n1/n2 = -(n2/n1) donc +deviendra -+.
- 3. Travaillons-nous avec des abondances relatives ou absolues?
 - Relative! Il faudrait quantifier la présence de chaque individu par PCR.
- 4. Que pouvons-nous interpréter d'un lien négatif (-0) entre Oïdium (n1) et Doryphore adulte (n2) par rapport à un réseau DCN : utilisation d'un pesticide de synthèse (data1) et biocontrôle (data2)?
 - A. L'utilisation du pesticide entraînera une réduction de la population de l'un ou de l'autre des organismes.
 - B. L'effet du biocontrôle sur les populations de ravageurs est le même ou n'a aucun effet. Le biocontrôle attaque peut-être uniquement le stade larvaire du doryphore.
 - C. La réduction de la population d'un des ravageurs entraîne une augmentation de la population de l'autre.
 - D. Il faudrait consulter les tables d'abondance afin de déterminer quelles populations sont affectées et comment.
 - E. ...

Merci de votre écoute

Avez-vous des questions?

Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A.-L., & Depner, M. (2021). NetCoMi: Network construction and comparison for microbiome data in R. *Briefings in Bioinformatics*, 22(4), bbaa290. https://doi.org/10.1093/bib/bbaa290